90 research outputs found

    Distributed Detection over Fading MACs with Multiple Antennas at the Fusion Center

    Full text link
    A distributed detection problem over fading Gaussian multiple-access channels is considered. Sensors observe a phenomenon and transmit their observations to a fusion center using the amplify and forward scheme. The fusion center has multiple antennas with different channel models considered between the sensors and the fusion center, and different cases of channel state information are assumed at the sensors. The performance is evaluated in terms of the error exponent for each of these cases, where the effect of multiple antennas at the fusion center is studied. It is shown that for zero-mean channels between the sensors and the fusion center when there is no channel information at the sensors, arbitrarily large gains in the error exponent can be obtained with sufficient increase in the number of antennas at the fusion center. In stark contrast, when there is channel information at the sensors, the gain in error exponent due to having multiple antennas at the fusion center is shown to be no more than a factor of (8/pi) for Rayleigh fading channels between the sensors and the fusion center, independent of the number of antennas at the fusion center, or correlation among noise samples across sensors. Scaling laws for such gains are also provided when both sensors and antennas are increased simultaneously. Simple practical schemes and a numerical method using semidefinite relaxation techniques are presented that utilize the limited possible gains available. Simulations are used to establish the accuracy of the results.Comment: 21 pages, 9 figures, submitted to the IEEE Transactions on Signal Processin

    Towards Live 3D Reconstruction from Wearable Video: An Evaluation of V-SLAM, NeRF, and Videogrammetry Techniques

    Full text link
    Mixed reality (MR) is a key technology which promises to change the future of warfare. An MR hybrid of physical outdoor environments and virtual military training will enable engagements with long distance enemies, both real and simulated. To enable this technology, a large-scale 3D model of a physical environment must be maintained based on live sensor observations. 3D reconstruction algorithms should utilize the low cost and pervasiveness of video camera sensors, from both overhead and soldier-level perspectives. Mapping speed and 3D quality can be balanced to enable live MR training in dynamic environments. Given these requirements, we survey several 3D reconstruction algorithms for large-scale mapping for military applications given only live video. We measure 3D reconstruction performance from common structure from motion, visual-SLAM, and photogrammetry techniques. This includes the open source algorithms COLMAP, ORB-SLAM3, and NeRF using Instant-NGP. We utilize the autonomous driving academic benchmark KITTI, which includes both dashboard camera video and lidar produced 3D ground truth. With the KITTI data, our primary contribution is a quantitative evaluation of 3D reconstruction computational speed when considering live video.Comment: Accepted to 2022 Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC), 13 page
    • …
    corecore